
Computation at the Speed of Monads • July 2014

Computation at the Speed of Monads

Samuel McAravey

Brigham Young University - Idaho

mcaravey@live.com

7/14/2014

Abstract

Parallelism has been an issue as of late because of the rise of multi-core computers. Over time there have

been various solutions both, elegant and clumsy, but it is still hard to create a safe parallel program.

This paper will demonstrate how a simple monadic construct can create a program that is monadically

guaranteed to execute correct parallelism while taking advantage of CPU power the computer has to offer.

This paper will also demonstrate how this same construct tears down some of thee artificial constraints

imposed by various programming languages.

I. Introduction

T
oday multi-core systems are becom-

ing commonplace and developers are

having to rely on libraries and pack-

ages to parallelize their programs. This has

only gotten worse as computers have become

more powerful. These libraries and packages

don’t fix the root problem, rather they are more

of a Band-Aid that is painful and difficult for

many developers to use. In this paper I will

present a solution for the difficulties that we

have with parallelism and how it can be made

useful for everyday programming.

II. History

Back in the day single-core, single-CPU sys-

tems were easy to program. They traditionally

had only one thread of execution, and that

was all that the developer had to worry about.

When parallel libraries started coming out they

didn’t truly provide parallelism. Rather the

operating system simulated parallelism by task

switching or by some other means.

The Intel Itanium is a multi-core CPU that

failed in the market for several reasons. It is a

CPU that the operating systems were able to ac-

tually execute in parallel, but it failed because

developers did not have the tools available to

1

mailto:mcaravey@live.com

Computation at the Speed of Monads • July 2014

help write parallel code. In order to use the Ita-

nium, they would have to mangle their code in

such a way that the compiler would be able to

split the code up onto separate cores. Most de-

velopers are not capable of manually creating

parallelized code without the help of tools.

In their book, Modern processor design : fun-

damentals of superscalar processors, Shen and Li-

pasti stated:

"However, the holy grail of such re-

search - automated parallelization

of serial programs - has yet to ma-

terialize. While automated paral-

lelization of certain classes of al-

gorithms has been demonstrated,

such success has largely been lim-

ited to scientific and numeric appli-

cations with predictable flow con-

trol (e.g., nested loop structures

with statically determined itera-

tion counts) and statically analyz-

able memory access patterns. (e.g.,

walks over large multidimensional

arrays of float-point data)."

In order to achieve the maximum amount

of parallelism and reach this holy grail, we

have to solve the parallelism problems that are

facing us.

III. The Problem with Parallelism

The problem we run into is to automatically

create the most amount of parallelism possi-

ble without requiring the developer to wrestle

with the code to make it fit into some sort of

parallel mold. Once again, this is that holy

grail that we are looking for. Before we tackle

this problem head-on we need to step back and

analyze what is going on:

• In order to use all of the available com-

puting resources we need to parallelize

the code.

• In order to parallelize the code we need

to break it up into parallel work.

• In order to break the code up into paral-

lel work we need to avoid synchronizing

unnecessarily.

• In order to avoid synchronizing unneces-

sarily we need to find and remove artifi-

cial synchronization points.

The first step in solving this problem is to

look at what an artificial synchronization point

is.

IV. Synchronization Points

We know that there are certain points in our

code that forces us to synchronize before mov-

ing on. There are the obvious synchronization

2

Computation at the Speed of Monads • July 2014

points, such as blocking on a mutex, waiting

for IO, a long running operation, etc. Yet there

are also a couple of very important, but non-

obvious synchronization points. The first is a

branch, meaning any sort of a jump in the code.

An if statement is an example of a branching

jump, but a function call is also a jump.

A function call is a synchronization point

because it requires that all parameters be

present before the function can begin execu-

tion. This is very important because function

calls are everywhere in our code, yet we don’t

think of them as forcing synchronization upon

us. The way we can remove these blocking

function calls is to use lazy values.

1 void Work(Func<int> x, Func<int> y)

2 {

3 ...

4 }

Listing 1: Function Signature

Calling a function using lazy values allows

us execute the function without having the val-

ues of x and y available at the time of call. The

values of x and y are only needed when the

caller invokes the returned delegate. Because

of this it is perfectly possible that the delegate

is never called, meaning that x and y may never

be needed, and therefore are never evaluated.

This technique also solves the more generic

problem with branches: a branch may not need

all of the data in order to execute. Let’s look at

an if statement as an example:

1 if(getA())

2 return getB();

3 else

4 return getC();

Listing 2: Basic Branch

With this little example we can see that by

using lazy values we can avoid retrieving the

values of either B or C. This means that by cre-

ating a function that takes only lazy values we

can potentially execute a part or all of a func-

tion without ever having all of the parameters

available. This forces all of the code to be very

efficient by executing with only the required

3

Computation at the Speed of Monads • July 2014

data and nothing more.

What we have done is introduce partial ex-

ecution into our code simply by introducing

everything as a lazy value. This is and of itself

is very powerful, but it doesn’t quite solve the

parallelism problem that we have. The reason

for this is that the actual calls getA, getB, and

getC are all blocking calls. This means that

even with partial execution we still have to

block while we wait for the values to arrive,

which is terrible for parallelism.

In order to avoid blocking what we need

to do is provide callbacks to the getA/B/C func-

tions. This avoids blocking by asking for code

to execute when the value arrives. We can

change the previous code like so:

1 getA(callbackA);

2

3 void callbackA(bool a)

4 {

5 if(a)

6 getB(callbackB);

7 else

8 getC(callbackC);

9 }

Listing 3: Branching with Callbacks

By turning the parameters into lazy func-

tions with callbacks, we are able to avoid block-

ing calls. One important thing to note is that

these callbacks can be called multiple times. In

order to handle this we need the getA/B/C func-

tions to take another function object parameter

to represent completion. Also we need to add

another function object parameter to represent

errors that may have happened while evaluat-

ing the lazy value. If we combine these three

function object we get the following interface

for our callback object:

1 interface IObserver<T>

2 {

3 void OnNext(T value);

4 void OnCompleted();

5 void OnError(Exception error);

6 }

Listing 4: IObserver

4

Computation at the Speed of Monads • July 2014

Using this interface, we are able to provide

a single callback object to the getA/B/C func-

tions that can handle multiple values. Now

we want to represent an object that produces

values, which we can watch with an observable

object:

1 interface IObservable<T>

2 {

3 IDisposable Subscribe(IObserver<T> observer)

4 }

Listing 5: IObservable

Here an observable creates values and let’s

the observer know when it is done. Using these

constructs we can accurately represent the cre-

ation of values and the use of those values.

V. A New Kind of Function

I propose that all function parameters and re-

turn values be represented using these observ-

ables and observers in place of traditional rep-

resentations. By doing this we can still treat

values as values in our minds, while allow-

ing us to be more explicit and accurate in our

program definition. I realize that using these

constructs is complicated and can seem like a

lot of extra information, but all of this can be

hidden behind carefully crafted constructs or a

programming language to make things easier

for the developer.

The Observer, Observable pattern is a well

known design pattern. It allows an object to

produce values and notify an Observer when

those values are available. Those who are fa-

miliar with the [Reactive Extensions] (Rx) by

Microsoft will recognize the IObserver interface

and the IObservable interface. There are sev-

eral interviews explaining the mathematical

origins and the exact reason for the definitions

of the IObserver and IObservable interfaces, nei-

ther of which are within the scope of this arti-

cle [Meijer, 2014]. It is worthwhile to note that

these two interfaces are monadic, and as such,

all of the benefits of monads apply.

By using the IObserver and IObservable in-

terfaces we are able to provide the compiler

with the information it needs to completely

parallelize our programs without us needing

to mangle our code. Please note that this will

not fix poor algorithms, but it will be able to

automatically break up code into work that is

parallelizable.

To understand what we are doing from a

high level, it’s useful to visualize a tree of the

5

Computation at the Speed of Monads • July 2014

dependencies. Take a simple program that

reads in a string and prints it back out to the

console. The code and subsequent dependence

tree might look like this:

ReadLine

WriteLine

x

1 IObservable<string> read = Console.ReadLine();

2 IObservable<Unit> write = Console.WriteLine(read);

3 write.Subscribe();

Listing 6: ReadLine WriteLine

Looking at the dependency graph we know

that if we simply satisfy the dependency, it

does not matter how the code is written. In

fact, we can "call" the WriteLine function before

the ReadLine function and it will still execute

correctly.

This is possible because when we call Write-

Line we are providing a value which doesn’t

exist yet, but that will arrive in the future. We

can then perform a ReadLine, take the result

and set the value x with it. Now that the de-

pendency has been fulfilled the WriteLine is

able to execute and print out to the console.

Another powerful example is the automatic

parallelism. Since we are creating dependency

trees in our code, the compiler is able to exe-

cute separate branches of the tree in parallel. A

simple example of this is retrieving data from

the web. The following is an example tree and

code:

6

Computation at the Speed of Monads • July 2014

GoogleBing Yahoo

WriteLine

1 using (var client = new HttpClient())

2 {

3 string bing = await client.GetStringAsync(@"http://www.bing.com");

4 string google = await client.GetStringAsync(@"http://www.google.com");

5 string yahoo = await client.GetStringAsync(@"http://www.yahoo.com");

6

7 Console.WriteLine(bing);

8 Console.WriteLine(google);

9 Console.WriteLine(yahoo);

10 }

Listing 7: Basic Web Service Requests

7

Computation at the Speed of Monads • July 2014

1 using (var client = new HttpClient())

2 {

3 var obsClient = Observable.Return(client);

4 var bingUri = Observable.Return(@"http://www.bing.com");

5 var googleUri = Observable.Return(@"http://www.google.com");

6 var yahooUri = Observable.Return(@"http://www.yahoo.com");

7

8 // The GetString method is an extension,

9 // the details of which are not important here.

10 var bing = obsClient.GetString(bingUri);

11 var google = obsClient.GetString(googleUri);

12 var yahoo = obsClient.GetString(yahooUri);

13

14 var bingWrite = Console.WriteLine(bing);

15 var googleWrite = Console.WriteLine(google);

16 var yahooWrite = Console.WriteLine(yahoo);

17

18 var result = Observable.WaitForValues(bingWrite, googleWrite, yahooWrite);

19 await result;

20 }

Listing 8: Parallel Web Service Requests

After running several tests, the observable

code appears to executes on average about 20%

faster than the asynchronous code. Without

having to structure the code in a deformed

way, we were able to get speed ups in our code

automatically.

VI. Summary

The driver behind using the IObserver and IOb-

servable interfaces is to allow the maximum

amount of parallelism without forcing the de-

veloper to think in drastically different ways.

We are trying to solve the problems facing us

because of parallelism. Let’s remind ourselves

what we have accomplished with this:

• By removing artificial synchronization

points, we are able to avoid synchroniz-

ing unnecessarily.

• By avoiding synchronizing unnecessarily,

we are able to automatically break up the

code into parallel work.

• By automatically breaking up the code

into parallel work, we are able to paral-

lelize the code.

• By being able to parallelize the code, we

are able to use all of the available com-

puting resources.

With this new kind of function, we are able

to maximize the resources provided to us by

8

Computation at the Speed of Monads • July 2014

the computer with minimal effort. At the mo-

ment there is a lot of extra syntax required to

accurately express this kind of function in ex-

isting languages, but the idea has proven to be

very useful at solving the parallelism problems

of today.

References

[Meijer, 2014] Erik Meijer (2014). Dual-

ity and the End of Reactive http://

channel9.msdn.com/events/Lang-NEXT/

Lang-NEXT-2014/Keynote-Duality

[Reactive Extensions]

https://rx.codeplex.com/

List of listings

1 Function Signature 3

2 Basic Branch 3

3 Branching with Callbacks 4

4 IObserver 4

5 IObservable 5

6 ReadLine WriteLine 6

7 Basic Web Service Requests . . . 7

8 Parallel Web Service Requests . . 8

9

http://channel9.msdn.com/events/Lang-NEXT/Lang-NEXT-2014/Keynote-Duality
http://channel9.msdn.com/events/Lang-NEXT/Lang-NEXT-2014/Keynote-Duality
http://channel9.msdn.com/events/Lang-NEXT/Lang-NEXT-2014/Keynote-Duality
https://rx.codeplex.com/

	Introduction
	History
	The Problem with Parallelism
	Synchronization Points
	A New Kind of Function
	Summary

